810 research outputs found

    The NASA Tournament Laboratory (NTL): Improving Data Access at PDS while Spreading Joy and Engaging Students through 16 Micro-Contests

    Get PDF
    NASA PDS hosts terabytes of valuable data from hundreds of data sources and spans decades of research. Data is stored on flat-file systems regulated through careful meta dictionaries. PDS's data is available to the public through its website which supports data searches through drill-down navigation. While the system returns data quickly, result sets in response to identical input differ depending on the drill-down path a user follows. To correct this Issue, to allow custom searching, and to improve general accessibility, PDS sought to create a new data structure and API, and to use them to build applications that are a joy to use and showcase the value of the data to students, teachers and citizens. PDS engaged TopCoder and Harvard Business School through the NTL to pursue these objectives in a pilot effort. Scope was limited to Small Bodies Node data. NTL analyzed data, proposed a solution, and implemented it through a series of micro-contests. Contest focused on different segments of the problem; conceptualization, architectural design, implementation, testing, etc. To demonstrate the utility of the completed solution, NTL developed web-based and mobile applications that can compare targets, regardless of mission. To further explore the potential of the solution NTL hosted "Mash-up" challenges that integrated the API with other publically available assets, to produce consumer and teaching applications, including an Augmented Reality iPad tool. Two contests were also posted to middle and high school students via the NoNameSite.com platform, and as a result of these contests, PDS/SBN has initiated a Facebook program. These contests defined and implemented a data warehouse with the necessary migration tools to transform legacy data, produced a public web interface for the new search, developed a public API, and produced four mobile applications that we expect to appeal to users both within and, without the academic community

    The LHCb Outer Tracker Front End Electronics

    Get PDF
    This note provides an overview of the front-end electronics used to readout the drift-times of the LHCb Outer Tracker straw tube chambers. The main functional components of the readout are the ASDBLR ASIC for amplification and signal digitization, the OTIS ASIC for the time measurement and for the L0 buffering, and the GOL ASIC to serialize the digital data for the optical data transmission. The L1 buffer board used to receive the data which is sent via the optical link is a common LHCb development and is not described here. This note supersedes an earlier document [1]

    Neurocan genome-wide psychiatric risk variant affects explicit memory performance and hippocampal function in healthy humans

    Get PDF
    Alterations of the brain extracellular matrix (ECM) can perturb the structure and function of brain networks like the hippocampus, a key region in human memory that is commonly affected in psychiatric disorders. Here, we investigated the potential effects of a genome‐wide psychiatric risk variant in the NCAN gene encoding the ECM proteoglycan neurocan (rs1064395) on memory performance, hippocampal function and cortical morphology in young, healthy volunteers. We assessed verbal memory performance in two cohorts (N = 572, 302) and found reduced recall performance in risk allele (A) carriers across both cohorts. In 117 participants, we performed functional magnetic resonance imaging using a novelty‐encoding task with visual scenes. Risk allele carriers showed higher false alarm rates during recognition, accompanied by inefficiently increased left hippocampal activation. To assess effects of rs1064395 on brain morphology, we performed voxel‐based morphometry in 420 participants from four independent cohorts and found lower grey matter density in the ventrolateral and rostral prefrontal cortex of risk allele carriers. In silico eQTL analysis revealed that rs1064395 SNP is linked not only to increased prefrontal expression of the NCAN gene itself, but also of the neighbouring HAPLN4 gene, suggesting a more complex effect of the SNP on ECM composition. Our results suggest that the NCAN rs1064395 A allele is associated with lower hippocampus‐dependent memory function, variation of prefrontal cortex structure and ECM composition. Considering the well‐documented hippocampal and prefrontal dysfunction in bipolar disorder and schizophrenia, our results may reflect an intermediate phenotype by which NCAN rs1064395 contributes to disease risk

    Evaluation of continuous beam rescanning versus pulsed beam in pencil beam scanned proton therapy for lung tumours

    Get PDF
    The treatment of moving targets with pencil beam scanned proton therapy (PBS-PT) may rely on rescanning strategies to smooth out motion induced dosimetric disturbances. PBS-PT machines, such as Proteus (R) Plus (PPlus) and Proteus (R) One (POne), deliver a continuous or a pulsed beam, respectively. In PPlus, scaled (or no) rescanning can be applied, while POne implies intrinsic 'rescanning' due to its pulsed delivery. We investigated the efficacy of these PBS-PT delivery types for the treatment of lung tumours. In general, clinically acceptable plans were achieved, and PPlus and POne showed similar effectiveness

    Investigating Off-shell Stability of Anti-de Sitter Space in String Theory

    Full text link
    We propose an investigation of stability of vacua in string theory by studying their stability with respect to a (suitable) world-sheet renormalization group (RG) flow. We prove geometric stability of (Euclidean) anti-de Sitter (AdS) space (i.e., Hn\mathbf{H}^n) with respect to the simplest RG flow in closed string theory, the Ricci flow. AdS space is not a fixed point of Ricci flow. We therefore choose an appropriate flow for which it is a fixed point, prove a linear stability result for AdS space with respect to this flow, and then show this implies its geometric stability with respect to Ricci flow. The techniques used can be generalized to RG flows involving other fields. We also discuss tools from the mathematics of geometric flows that can be used to study stability of string vacua.Comment: 29 pages, references added in this version to appear in Classical and Quantum Gravit

    Diaphragm-Based Position Verification to Improve Daily Target Dose Coverage in Proton and Photon Radiation Therapy Treatment of Distal Esophageal Cancer

    Get PDF
    Purpose: In modern conformal radiation therapy of distal esophageal cancer, target coverage can be affected by variations in the diaphragm position. We investigated if daily position verification (PV) extended by a diaphragm position correction would optimize target dose coverage for esophageal cancer treatment. Methods and Materials: For 15 esophageal cancer patients, intensity modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans were computed. Displacements of the target volume were correlated with diaphragm displacements using repeated 4-dimensional computed tomography images to determine the correction needed to account for diaphragm variations. Afterwards, target coverage was evaluated for 3 PV approaches based on: (1) bony anatomy (PV_B), (2) bony anatomy corrected for the diaphragm position (PV_BD) and (3) target volume (PV_T). Results: The cranial-caudal mean target displacement was congruent with almost half of the diaphragm displacement (y = 0.459x), which was used for the diaphragm correction in PV_BD. Target dose coverage using PV_B was adequate for most patients with diaphragm displacements up till 10 mm (>= 94% of the dose in 98% of the volume [D-98%]). For larger displacements, the target coverage was better maintained by PV_T and PV_BD. Overall, PV_BD accounted best for target displacements, especially in combination with tissue density variations (D-98%: IMPT 94% +/- 5%, VMAT 96% +/- 5%). Diaphragm displacements of more than 10 mm were observed in 22% of the cases. Conclusions: PV_B was sufficient to achieve adequate target dose coverage in case of small deviations in diaphragm position. However, large deviations of the diaphragm were best mitigated by PV_BD. To detect the cases where target dose coverage could be compromised due to diaphragm position variations, we recommend monitoring of the diaphragm position before treatment through online imaging. (C) 2021 Elsevier Inc. All rights reserved

    A comprehensive motion analysis - consequences for high precision image-guided radiotherapy of esophageal cancer patients

    Get PDF
    Background and purpose When treating patients for esophageal cancer (EC) with photon or proton radiotherapy (RT), breathing motion of the target and neighboring organs may result in deviations from the planned dose distribution. The aim of this study was to evaluate the magnitude and dosimetric impact of breathing motion. Results were based on comparing weekly 4D computed tomography (4D CT) scans with the planning CT, using the diaphragm as an anatomical landmark for EC. Material and methods A total of 20 EC patients were included in this study. Diaphragm breathing amplitudes and off-sets (changes in position with respect to the planning CT) were determined from delineated left diaphragm structures in weekly 4D CT-scans. The potential dosimetric impact of respiratory motion was shown in several example patients for photon and proton radiotherapy. Results Variation in diaphragm amplitudes were relatively small and ranged from 0 to 0.8 cm. However, the measured off-sets were larger, ranging from -2.1 to 1.9 cm. Of the 70 repeat CT-scans, the off-set exceeded the ITV-PTV margin of 0.8 cm during expiration in 4 CT-scans (5.7%) and during inspiration in 13 CT-scans (18.6%). The dosimetric validation revealed under- and overdosages in the VMAT and IMPT plans. Conclusions Despite relatively constant breathing amplitudes, the variation in the diaphragm position (off-set), and consequently tumor position, was clinically relevant. These motion effects may result in either treatments that miss the target volume, or dose deviations in the form of highly localized over- or underdosed regions

    Assessment of a diaphragm override strategy for robustly optimized proton therapy planning for esophageal cancer patients

    Get PDF
    PURPOSE: To ensure target coverage in the treatment of esophageal cancer, a density override to the region of diaphragm motion can be applied in the optimization process. Here, we evaluate the benefit of this approach during robust optimization for intensity modulated proton therapy (IMPT) planning.MATERIALS AND METHODS: For ten esophageal cancer patients, two robustly optimized IMPT plans were created either using (WDO) or not using (NDO) a diaphragm density override of 1.05 g/cm3 during plan optimization. The override was applied to the excursion of the diaphragm between exhale and inhale. Initial robustness evaluation was performed for plan acceptance (setup errors of 8 mm, range errors of ±3%), and subsequently, on all weekly repeated 4DCTs (setup errors of 2 mm, range errors of ±3%). Target coverage and hotspots were analyzed on the resulting voxel-wise minimum (Vwmin ) and voxel-wise maximum (Vwmax ) dose distributions.RESULTS: The nominal dose distributions were similar for both WDO and NDO plans. However, visual inspection of the Vwmax of the WDO plans showed hotspots behind the right diaphragm override region. For one patient, target coverage and hotspots improved by applying the diaphragm override. We found no differences in target coverage in the weekly evaluations between the two approaches.CONCLUSION: The diaphragm override approach did not result in a clinical benefit in terms of planning and interfractional robustness. Therefore, we don't see added value in employing this approach as a default option during robust optimization for IMPT planning in esophageal cancer.</p

    Assessment of a diaphragm override strategy for robustly optimized proton therapy planning for esophageal cancer patients

    Get PDF
    PURPOSE: To ensure target coverage in the treatment of esophageal cancer, a density override to the region of diaphragm motion can be applied in the optimization process. Here, we evaluate the benefit of this approach during robust optimization for intensity modulated proton therapy (IMPT) planning. MATERIALS AND METHODS: For ten esophageal cancer patients, two robustly optimized IMPT plans were created either using (WDO) or not using (NDO) a diaphragm density override of 1.05 g/cm3 during plan optimization. The override was applied to the excursion of the diaphragm between exhale and inhale. Initial robustness evaluation was performed for plan acceptance (setup errors of 8 mm, range errors of ±3%), and subsequently, on all weekly repeated 4DCTs (setup errors of 2 mm, range errors of ±3%). Target coverage and hotspots were analyzed on the resulting voxel-wise minimum (Vwmin ) and voxel-wise maximum (Vwmax ) dose distributions. RESULTS: The nominal dose distributions were similar for both WDO and NDO plans. However, visual inspection of the Vwmax of the WDO plans showed hotspots behind the right diaphragm override region. For one patient, target coverage and hotspots improved by applying the diaphragm override. We found no differences in target coverage in the weekly evaluations between the two approaches. CONCLUSION: The diaphragm override approach did not result in a clinical benefit in terms of planning and interfractional robustness. Therefore, we don't see added value in employing this approach as a default option during robust optimization for IMPT planning in esophageal cancer

    Towards the clinical implementation of intensity-modulated proton therapy for thoracic indications with moderate motion:Robust optimised plan evaluation by means of patient and machine specific information

    Get PDF
    PURPOSE: Compared to volumetric modulated arc therapy (VMAT), clinical benefits are anticipated when treating thoracic tumours with intensity-modulated proton therapy (IMPT). However, the current concern of plan robustness as a result of motion hampers its wide clinical implementation. To define an optimal protocol to treat lung and oesophageal cancers, we present a comprehensive evaluation of IMPT planning strategies, based on patient 4DCTs and machine log files. MATERIALS AND METHODS: For ten lung and ten oesophageal cancer patients, a planning 4DCT and weekly repeated 4DCTs were collected. For these twenty patients, the CTV volume and motion were assessed based on the 4DCTs. In addition to clinical VMAT plans, layered rescanned 3D and 4D robust optimised IMPT plans (IMPT_3D and IMPT_4D respectively) were generated, and approved clinically, for all patients. The IMPT plans were then delivered in dry runs at our proton facility to obtain log files, and subsequently evaluated through our 4D robustness evaluation method (4DREM). With this method, for each evaluated plan, fourteen 4D accumulated scenario doses were obtained, representing 14 possible fractionated treatment courses. RESULTS: From VMAT to IMPT_3D, nominal Dmean(lungs-GTV) decreased 2.75 ± 0.56 GyRBE and 3.76 ± 0.92 GyRBE over all lung and oesophageal cancer patients, respectively. A more pronounced reduction was verified for Dmean(heart): 5.38 ± 7.36 GyRBE (lung cases) and 9.51 ± 2.25 GyRBE (oesophagus cases). Target coverage robustness of IMPT_3D was sufficient for 18/20 patients. Averaged dose in critical structures over all 4DREM scenarios changed only slightly for both IMPT_3D and IMPT_4D. Relative to IMPT_3D, no gain in IMPT_4D was observed. CONCLUSION: The dosimetric superiority of IMPT over VMAT has been established. For most thoracic tumours, our IMPT_3D planning protocol showed to be robust and clinically suitable. Nevertheless, accurate patient positioning and adapting to anatomical variations over the course of treatment remain compulsory
    corecore